Bayesian semiparametric multi-state models
نویسندگان
چکیده
Multi-state models provide a unified framework for the description of the evolution of discrete phenomena in continuous time. One particular example are Markov processes which can be characterised by a set of time-constant transition intensities between the states. In this paper, we will extend such parametric approaches to semiparametric models with flexible transition intensities based on Bayesian versions of penalised splines. The transition intensities will be modelled as smooth functions of time and can further be related to parametric as well as nonparametric covariate effects. Covariates with time-varying effects and frailty terms can be included in addition. Inference will be conducted either fully Bayesian using Markov chain Monte Carlo simulation techniques or empirically Bayesian based on a mixed model representation. A counting process representation of semiparametric multi-state models provides the likelihood formula and also forms the basis for model validation via martingale residual processes. As an application, we will consider human sleep data with a discrete set of sleep states such as REM and Non-REM phases. In this case, simple parametric approaches are inappropriate since the dynamics underlying human sleep are strongly varying throughout the night and individual-specific variation has to be accounted for using covariate information and frailty terms.
منابع مشابه
Bayesian Semiparametric Regression Analysis of Multicategorical Time-space Data
SUMMARY We present a uniied semiparametric Bayesian approach based on Markov random eld priors for analyzing the dependence of multicategorical response variables on time, space and further covariates. The general model extends dynamic, or state space, models for categorical time series and longitudinal data by including spatial eeects as well as nonlinear eeects of metrical covariates in exibl...
متن کاملBayesian Inference for Generalized Additive Regression based on Dynamic Models
We present a general approach for Bayesian inference via Markov chain Monte Carlo MCMC simulation in generalized additive semiparametric and mixed models It is particularly appropriate for discrete and other fundamentally non Gaussian responses where Gibbs sampling techniques developed for Gaussian models cannot be applied We use the close relation between nonparametric regression and dynamic o...
متن کاملBayesian Optimum Design Criterion for Multi Models Discrimination
The problem of obtaining the optimum design, which is able to discriminate between several rival models has been considered in this paper. We give an optimality-criterion, using a Bayesian approach. This is an extension of the Bayesian KL-optimality to more than two models. A modification is made to deal with nested models. The proposed Bayesian optimality criterion is a weighted average, where...
متن کاملBayesian Elastic-Net and Fused Lasso for Semiparametric Structural Equation Models
SUMMARY: Structural equation models are well-developed statistical tools for multivariate data with latent variables. Recently, much attention has been given to developing structural equation models that account for nonlinear relationships between the endogenous latent variables, the covariates, and the exogenous latent variables. [Guo et al. (2012)], developed a semiparametric structural equat...
متن کاملIrregular-Time Bayesian Networks
In many fields observations are performed irregularly along time, due to either measurement limitations or lack of a constant immanent rate. While discrete-time Markov models (as Dynamic Bayesian Networks) introduce either inefficient computation or an information loss to reasoning about such processes, continuous-time Markov models assume either a discrete state space (as Continuous-Time Bayes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006